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Stochastic Media

▶ Materials or media with an
inherent disorder or lack of
structure

▶ Geometry of system is only
known statistically

▶ Physical properties appear
random on the length scale
of interest

▶ If a material is present at a
solution point, the moment
equation solutions are
rendered inaccurate

Examples:
▶ Rayleigh-Taylor instability

▶ Turbulence
▶ Pebble-bed reactors

▶ Double-heterogeneity
▶ Atmospheric or interstellar

clouds
▶ Inertial Confinement

Fusion (ICF)
▶ Subject to radiative

transport



Binary Stochastic Media

▶ Usually considered for
academic and research
simplicity

▶ Two immiscible,
non-participating materials

▶ Characterized by mean
geometric chord length λi

▶ ICF application: random material distribution due to
instabilities in laser-target interaction

▶ Accurate modeling requires the generation of many individual
realizations of media

▶ Nonlinear temperature-dependent material properties are
handled heuristically in closure models



Markovian Binary Random Medium in Planar Geometry
▶ Alternating layers of two materials with Poisson mixing statistics

Mean geometric chord length → λi Volume fraction → pi

p1 = λ1

λ1 + λ2
p2 = 1 − p1 Pi(s)ds = 1

λi
e− s

λi ds

λ1 = 101
20 cm

λ2 = 101
20 cm

λ1 = 99
100 cm

λ2 = 11
100 cm



Linear Transport in a Stochastic Realization

Linear neutral particle transport equation for monoenergetic system

1
v
∂ψ

(
r⃗ , Ω⃗, t;ω

)
∂t + Ω⃗ · ∇⃗ψ

(
r⃗ , Ω⃗, t;ω

)
+ σt (⃗r , t;ω)ψ

(
r⃗ , Ω⃗, t;ω

)
=

σs (⃗r , t;ω)
4π

∫
4π

dΩ⃗′ψ
(
r⃗ , Ω⃗′, t;ω

)
+ S

(
r⃗ , Ω⃗, t;ω

)
▶ Time rate of change - balance of angular flux ψ with respect

to time
▶ Geometric leakage - loss of particles from system geometry
▶ Interaction loss - loss of particles from absorption and

scattering interactions
▶ Inscatter - particles entering phase space via scattering

interactions
▶ Source - external or volumetric source term
▶ Random state - of many independent realizations, the state of

the geometry is denoted by ω



Atomic Mix Model

▶ One-equation model → Easily applied to existing transport
methodologies and codes

▶ Material properties and quantities of interest are assumed to
be the ensemble average values

⟨σa (⃗r , t)⟩ = p0σa0 (⃗r , t) + p1σa1 (⃗r , t)

Atomic Mix Transport Equation

1
v
∂

〈
ψ

(
r⃗ , Ω⃗, t

)〉
∂t + Ω⃗ · ∇⃗

〈
ψ

(
r⃗ , Ω⃗, t

)〉
+ ⟨σa (⃗r , t)⟩

〈
ψ

(
r⃗ , Ω⃗, t

)〉
=

⟨σs (⃗r , t)⟩
4π ⟨ϕ (⃗r , t)⟩ +

〈
S

(
r⃗ , Ω⃗, t

)〉
▶ Effectively removes streaming paths through optically thin

material
▶ Approximation is only valid when chord lengths approach zero

relative to the mean free path of the particles



Linear Transport in Stochastic Media
▶ Construct a formally exact equation by ensemble averaging

each term in the Transport Equation
▶ Characteristic equation:

χi (⃗r , t) =
{

1 position r⃗ in i at time t
0 otherwise

▶ Introduces conditional parameters and properties:
ψi

(
r⃗ , Ω⃗, t

)
, σti (⃗r , t) , etc...

Conditioned on position r⃗ in i at time t

▶ Properties of interest may be obtained via unconditional
averaging:〈

ψ
(
r⃗ , Ω⃗, t

)〉
= piψi

(
r⃗ , Ω⃗, t

)
+ pjψj

(
r⃗ , Ω⃗, t

)
i, j = 1, 2 i ̸= j



Linear Transport in Stochastic Media

Formally exact equations in binary media - ensemble average of each term

1
v
∂piψi

(
r⃗ , Ω⃗, t

)
∂t + Ω⃗ · ∇⃗

(
piψi

(
r⃗ , Ω⃗, t

))
+ σti (⃗r , t) piψi

(
r⃗ , Ω⃗, t

)
=

σsi (⃗r , t)
4π pi

∫
4π

dΩ⃗′ψi
(
r⃗ , Ω⃗′, t

)
+piSi

(
r⃗ , Ω⃗, t

)
+

pjψj
(
r⃗ , Ω⃗, t

)
λj

−
piψi

(
r⃗ , Ω⃗, t

)
λi

Similar coupled equation with conditional properties for material j

i, j = 1, 2 i ̸= j

Variables and properties now conditioned on material at (⃗r , t)
▶ Transition source - particles entering via material transitions from

material j
▶ Transition loss - particles exiting via material transitions out of

material i
▶ Transition terms dependent on ensemble average flux values at

transition points, or material interfaces



Closure Error and Correction

ψi
(
r⃗ , Ω⃗, t

)
, ψj

(
r⃗ , Ω⃗, t

)
▶ With angular redistribution, or other system-memory effects,

it is nontrivial to write ψi in terms of ψi
▶ First-order moments of quantities of interest directly depend

on higher-order moments
▶ A closure statement is required to model the problem
▶ ψi and ψj cannot be determined a priori to computation

▶ Commonly implemented closure model is the
Levermore-Pomraning (LP)

▶ For a purely-absorbing Markovian geometry, it is an exact
replacement to substitute ψi with ψi
▶ For time-independent transport, the solution depends only on

the optical depths between the solution point and the system
boundary



Levermore-Pomraning Closure Model

Allow ψi = ψi

1
v
∂piψi

(
r⃗ , Ω⃗, t

)
∂t + Ω⃗ · ∇⃗

(
piψi

(
r⃗ , Ω⃗, t

))
+ σti (⃗r , t) piψi

(
r⃗ , Ω⃗, t

)
=

σsi (⃗r , t)
4π pi

∫
4π

dΩ⃗′ψi
(
r⃗ , Ω⃗′, t

)
+piSi

(
r⃗ , Ω⃗, t

)
+

pjψj
(
r⃗ , Ω⃗, t

)
λj

−
piψi

(
r⃗ , Ω⃗, t

)
λi

Similar coupled equation with conditional properties for material j

▶ Replace interface ensemble-averaged ψi with volumetric
ensemble-averaged ψi

▶ First-order closure approximation
▶ Exact in pure-absorber, Markovian geometry case
▶ At minimum, first-order moment may be obtained

▶ LP equations can be written for higher order moments, but
accuracy suffers

▶ Desired properties computed from unconditional average:
⟨ψ⟩ = p1ψ1 + p2ψ2



Illustration of Atomic Mix and LP Performance

S16 diamond-difference transport model over 5 × 105 realizations
Isotropic source, vacuum boundaries

Strongly Absorbing Profile

Parameter Value
σt1 2/101
σt2 200/101
c1 1.00
c2 0.00
λ1 101/20
λ2 101/20

Strongly Scattering Profile

Parameter Value
σt1 10/99
σt2 100/11
c1 0.90
c2 0.90
λ1 101/20
λ2 101/20



Gray Thermal Radiation Transport
Dependent on random state, denoted by ω

Transport Equation for Radiation Intensity I :

1
c

∂I
(

r⃗ , Ω⃗, t; ω
)

∂t
+ Ω⃗ · ∇⃗I

(
r⃗ , Ω⃗, t; ω

)
+ σa (T , r⃗ ; ω) I

(
r⃗ , Ω⃗, t; ω

)
=

1
4π

cσa (T , r⃗ ; ω) a [T (⃗r , t; ω)]4

▶ Time rate of change - balance of intensity with respect to time
▶ Geometric leakage - loss of radiation via geometry boundaries
▶ Absorption - loss of radiation via material absorption
▶ Emission - gain of radiation through thermal emission

Material Energy Balance in Temperature T :

ρ (T , r⃗ ; ω) Cv (T , r⃗ ; ω)
∂T (⃗r , t; ω)

∂t
+ cσa (T , r⃗ ; ω) a [T (⃗r , t; ω)]4

= σa (T , r⃗ ; ω)
∫

4π

dΩ⃗′I
(

r⃗ , Ω⃗′, t; ω
)

▶ Time rate of change - balance of temperature with respect to time
▶ Emission - loss of temperature via thermal emission
▶ Absorption - gain in temperature via material absorption



Nonlinear Transport - Considerations

▶ Temperature dependence of material properties results in
equation nonlinearity
▶ Opacity - σa (T , r⃗ ;ω)
▶ Specific heat - Cv (T , r⃗ ;ω)
▶ Density - ρ (T , r⃗ ;ω)
▶ Material properties are dependent on temperature,

temperature is derived from material properties
▶ Stochastic media

▶ Solve coupled equations on individual geometry realizations
and ensemble average → expensive

▶ Apply deterministic model equations in atomic mix
approximation → cheap but not useful

▶ Direct ensemble averaging creates stochastic closure challenge
due to material transitions and nonlinear dependence on T



Nonlinear Transport - Homogenization: LP Model

▶ Material averaged intensity and temperature conditioned on r⃗
existing in material i: Ii

(
r⃗ , Ω⃗, t

)
, Ti (⃗r , t)

▶ Levermore-Pomraning (LP) Model:
1
c
∂ (piIi)
∂t + µ

∂piIi

∂t + σai (Ti)piIi = a
4πσai (Ti) pi [Ti ]4 + pjIj

λj
− piIi

λi

ρi (Ti) Cvi (Ti)
∂piTi

∂t + acσai (Ti) pi [Ti ]4 = σai (Ti)
∫

4π

dΩ⃗′piIi

i, j = 1, 2 i ̸= j

Unconditional averages: ⟨I ⟩ = p0I0 + p1I1 ⟨T⟩ = p0T0 + p1T1

▶ Homogenized model has two sources of error:
▶ Closure of material transitions: Markovian closure, difficult to

improve
▶ Heuristic treatment of nonlinearities: ⟨f (T )⟩ ≠ f (⟨T ⟩)

▶ Isolate one source of error for analysis?



Random Medium with Temporal Markov Transitions

▶ Simpler problem without closure error, new method that
exactly incorporates stochastic nonlinear physics

▶ Lumped model with material properties switching randomly in
time between two states
▶ e.g. subvolume in large computational domain

▶ Nonlinear, space-independent gray equations for radiation
intensity transport and material energy balance
▶ Function of the material state ω

1
c
∂I (t;ω)
∂t + σa (T , t;ω) I (t;ω) = cσa (T , t;ω) aT4 (t;ω)

ρ (T , t;ω) Cv (T , t;ω) ∂T (t;ω)
∂t +cσa (T , t;ω) aT4 (t;ω) = σa (T , t;ω) I (t;ω)

▶ Assume nonrandom initial conditions on radiation intensity
and material temperature:

I (0;ω) = I0 T (0;ω) = T0



Random Medium with Temporal Markov Transitions
▶ Important characteristics:

▶ Mean sojourn time τi : mean time to transition from material i
with Poisson statistics

▶ Material properties vary randomly in time via random
temperature: ρ (T , t;ω), Cv (T , t;ω), σa (T , t;ω)

▶ At any time t, I (t;ω) and T (t;ω) are random variables with a
continuum state space: 0 < I < ∞, and 0 < T < ∞
▶ Probability densities and first-order moments may be obtained

exactly
▶ Define Pi (ϕ, θ, t) dϕdθ: joint probability density that the radiation

intensity lies in (ϕ, ϕ+ dϕ) and the temperature in (θ, θ + dθ)
▶ Marginal densities: Pi (ϕ, t) =

∫
Pi (ϕ, θ, t) dθ

Pi (θ, t) =
∫

Pi (ϕ, θ, t) dϕ

▶ Material averaged radiation intensity and temperature moments:

ϕi (t) =
∫ ∞

0
ϕPi (ϕ, t) dϕ θi (t) =

∫ ∞

0
θPi (θ, t) dθ



Direct Numerical Solution
▶ Construct numerical solution on individual realizations and

post-process - provides benchmark solution
▶ Backward Euler method with time step linearization:

ϕn+1 − ∆tc2σa (θn+1) aθ4
n+1 + ∆tcσa (θn+1)ϕn+1 − ϕn

= 0 := f (ϕn+1, θn+1)

θn+1 − ∆tσa (θn+1)
ρ (θn+1) Cv (θn+1)ϕn+1 + ∆tcσa (θn+1)

ρ (θn+1) Cv (θn+1)aθ4
n+1 − θn

= 0 := g (ϕn+1, θn+1)

▶ In vector form:

u⃗ :=
[
ϕn+1
θn+1

]
w⃗ :=

[
f
g

]
=⇒ w⃗ (u⃗) = 0⃗



Direct Numerical Solution

▶ Newton iteration scheme with iteration index k:
w⃗ (u⃗k) + Dw⃗ (u⃗k) (u⃗k+1 − u⃗k) = 0⃗

Dw⃗ (u⃗k) ∆u⃗ = −w⃗ (u⃗k) where ∆u⃗ = u⃗k+1 − u⃗k

Dw⃗ (u⃗k) = Jk =
[

∂fk
∂ϕn+1

∂fk
∂θn+1

∂gk
∂ϕn+1

∂gk
∂θn+1

]
→ Jacobian

▶ Jacobian can be created by complex-step differentiation for
any selected dependencies in material properties:

∂

∂x F (x0, y0) ≈ Im (F (x0 + ih, y0))
h + O

(
h2

)
where h := 10−8

▶ Solution applied independently on individual unstructured
realizations, mapped onto structured overlay for averaging



Stochastic Simulation Algorithm

▶ Simulation based on updating state variables (I ,T , i) by
considering two possible outcomes over infinitesimal time ∆t:
▶ Material transition i → j occurs with probability ∆t

τi
▶ No material transition occurs with probability 1 − ∆t

τi
, and

internal state (I ,T ) changes according to problem dynamics
▶ Probability of an internal state change occurring concurrently

with a material transition is O (∆t2) and ignored
▶ Differential change in internal state obtained from dynamical

equations over ∆t:
I (t + ∆t) − I (t) = ∆t

[
c2σa (T) aT (t)4 − cσa (T) I (t)

]
T (t + ∆t) − T (t) = ∆t

ρ (T) Cv (T)
[
σa (T) I (t) − cσa (T) aT (t)4]

▶ Construct an individual time history by considering random
state changes at each time step until final time

▶ Repeat for large number of histories, order results according
to material type, and construct PDFs and averages



Heuristic Model for Material Averages
▶ As statistics of material mixing and solution dynamics are

jointly Markovian, LP closure is exact
▶ However, material parameters must be represented as

functions of average temperature
▶ Heuristic model equations read:

∂piIi
∂t = c2σai (Ti) apiT 4

i − cσai (Ti) piIi + pjIj
τj

− piIi
τi

∂piTi
∂t = σai (Ti) piIi

ρi (Ti) Cvi (Ti)
− cσai (Ti) apiT 4

i
ρi (Ti) Cvi (Ti)

+ pjTj
τj

− piTi
τi

i, j = 1, 2 i ̸= j

▶ Note appearance of material transition terms in material
temperature balance equation

▶ Closure is exact because system is jointly Markovian
▶ Closure error is removed from problem when material

properties are not temperature dependent



Material Properties for Numerical Illustration

▶ Adopt a widely used temperature-dependent opacity model
and assume density and specific heat are temperature
independent but material dependent

σai (T) = Ai

T3 Cvi (T) = Cvi ρi (T) = ρi i = 1, 2

▶ Numerical parameters:

A1 = 1.0 eV3cm−1 A2 = 5.0 eV3cm−1

Cv1 = Cv2 = 1.0 erg g−1eV−1

ρ1 = ρ2 = 1.0 g cm−3

τ1 = 3.35 × 10−14 s τ2 = 1.67 × 10−13 s
I0 = 1.0 erg cm−2s−1 T0 = 1.0 eV

▶ These parameters correspond to a problem state with initially
high temperature, low radiation intensity



Comparison of Models - Nonlinear Cooling Problem
Direct Numerical Experiment Stochastic Simulation

▶ Stochastic simulation shows ∼ 70x speedup over direct
numerical model on average, without unstructured mapping
noise



With Radiation Loss (Leakage)

▶ Equilibrium state exists in the problem, may be removed by
approximating radiation intensity loss
▶ Introduce a greater degree of non-triviality into the problem

▶ As an ad-hoc attempt to include leakage, a multiplier on
radiation intensity loss is incorporated
▶ Characteristically absorption term

1
c
∂I (t;ω)
∂t + ασa (T , t;ω) I (t;ω) = cσa (T , t;ω) aT4 (t;ω)

Intensity Temperature



Probability Density Profiles of Material Parameters
▶ Histograms are created in a second run of the problem

▶ At selected time value, data is binned for each parameter

▶ Clear performance difference
between the benchmark
ensemble average and
heuristic closure average

▶ This difference is caused by
the heuristic treatment of
nonlinearities in the material
properties



Proposed Analysis - Probability Densities
▶ A probability balance argument yields exactly closed equations

for the joint conditional probability density
Pi (ϕ, θ, t) dϕdθ, Conditioned on material being i

▶ Results in Master Equations
∂

∂t (p1P1) + ∂

∂ϕ
(f1p1P1) + ∂

∂θ
(g1p1P1) = p2

τ2
P2 − p1

τ1
P1

∂

∂t (p2P2) + ∂

∂ϕ
(f2p2P2) + ∂

∂θ
(g2p2P2) = p1

τ1
P1 − p2

τ2
P2

▶ Defining auxiliary functions, non-constant coefficients:
fi (ϕ, θ) = cσai (θ)

(
caθ4 − ϕ

)
, gi (ϕ, θ) = σai (θ)

ρi (θ) Cvi (θ)
(
ϕ− caθ4)

▶ Useful to have a deterministic solution, additional benchmark
against computational values

▶ Three-dimensional discretization
▶ (time, radiation intensity, thermal energy)
▶ Investigating sparse matrix solvers for a banded matrix from

finite difference; possibility of finite element solution



Implicit Monte Carlo with Branson

https://github.com/lanl/branson
▶ Mini-app designed by Alex Long (LANL)

▶ Used to study different parallel methods and facets of solving
IMC problems

▶ Domain decomposition vs. replicated solvers, etc.

Gray Thermal Radiation Model

1
c
∂I

(
r⃗ , Ω⃗, t

)
∂t +Ω⃗·∇⃗I

(
r⃗ , Ω⃗, t

)
+σa (T , r⃗) I

(
r⃗ , Ω⃗, t

)
= 1

4π cσa (T , r⃗) a [T (⃗r , t)]4

ρ (T , r⃗) Cv (T , r⃗) ∂T (⃗r , t)
∂t +cσa (T , r⃗) a [T (⃗r , t)]4 = σa (T , r⃗)

∫
4π

dΩ⃗′I
(
r⃗ , Ω⃗′, t

)
▶ IMC introduces a O (∆t) approximation on the implicit

emission temperature given time-step n
▶ Taylor Series expanded in ∆t = t − tn about tn

T4
n+1 = T4

n + ∆t4T3
n
∂T
∂t + O

(
∆t2)

https://github.com/lanl/branson


Implicit Monte Carlo

IMC Gray Thermal Radiation Model

Radiation Intensity I :

1
c
∂I

(
r⃗ , Ω⃗, t

)
∂t + Ω⃗ · ∇⃗I

(
r⃗ , Ω⃗, t

)
+ σa (T , r⃗) I

(
r⃗ , Ω⃗, t

)
=

f
4π cσa (T , r⃗) a [T (⃗r , t)]4 + 1 − f

4π

∫
4π

dΩ⃗′σa (T , r⃗) I
(
r⃗ , Ω⃗′, t

)
Material Energy Balance in Temperature T :

ρ (T , r⃗) Cv (T , r⃗) ∂T (⃗r , t)
∂t +f cσa (T , r⃗) a [T (⃗r , t)]4 = fσa (T , r⃗)

∫
4π

dΩ⃗′I
(
r⃗ , Ω⃗′, t

)
▶ Particle absorption and re-emission during the same time-step

is governed by an effective scattering approximation
(Fleck factor)

f = 1
1 + 4acT3σa∆t

ρCv



Limitations of Implicit Monte Carlo

▶ There is a linearization imposed on each time-step
ρnCvn

∆t (Tn+1 − Tn) = fnσan

∫ tn+1

tn

(∫
4π

IdΩ⃗ − caT 4
n

)
dt

▶ This linearization results in a semi-implicit system, using the
previous value of Tn to estimate Tn+1
▶ System is unconditionally stable for arbitrarily large time-steps

▶ However, fails to preserve maximum principle
▶ Material temperature cannot exceed the boundary temperature

in the absence of external sources
▶ Incurs an upper limit on the size of the time-step



Additions to Branson IMC Code System

Primary additions to Branson as a stochastic-geometry
research code:

▶ HDF5 output files and post-processing
▶ Isotropic and angular-distributed source boundary conditions

▶ Useful for Marshak Wave problem analysis
▶ Planar stochastic geometry modeling

▶ Homogeneous and non-homogeneous Poisson generation
▶ Parallel geometry realizations generation and statistical

tallying / unstructured grid mapping
▶ Chord length sampling (CLS) method of stochastic transport

▶ When sampling photon packet interaction, incorporation of
"distance to material transition" ∝ − ln (ξ)λi

▶ Statistically equivalent to LP approximation
▶ Incorporation of two-dimensional Poisson Box geometry

generation and subsequent unstructured grid mapping



Stochastic Media in Branson - 1D High-Constrast Mix

σa1 = 90.1

σa2 = 0.1

λ1 = 0.11

λ2 = 0.99

▶ Atomic Mix model
shows increased
attenuation in media

▶ CLS model shows
reduced attenuation due
to lack of angular
redistribution "memory"



Poisson-Box Tesselations

▶ Multi-Dimensional Poisson Box geometry generation
(Larmier, 2018)

ρb = 2
3λc

λc =
( 1
λ1

+ 1
λ2

)−1

▶ Sample a number of intersections Nx in the Cartesian x-plane
from a Poisson distribution of parameter ρbL

▶ Sample Nx points uniformly in (0,L)
▶ Cut the geometry with a plane orthogonal to the x-axis at

each point
▶ Repeat for other axes
▶ Each generated cell is "colored", or assigned a material based

on uniformly sampling material volume fraction



Poisson-Box Tesselation Realizations

λ1 = 101
20 cm

λ2 = 101
20 cm

λ1 = 99
100 cm

λ2 = 11
100 cm



Ongoing Research with Branson - Proposed Analysis

▶ Apply non-homogeneous Poisson statistics to 2D Poisson Box
generation
▶ Linear, quadratic, doubly-stochastic Cox process

▶ Assess Markovian closure accuracy in 2D relative to 1D
▶ Investigate asymptotic limits of realizations generation and

chord length sampling models in 1D and 2D
▶ Atomic Mix limit
▶ High Contrast limit
▶ Diffusion limit


